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Communicated by Caren Binding
Lake Erie has experienced dramatic changes in water quality over the past several decades requiring extensive
monitoring to assess effectiveness of adaptive management strategies. Remote sensing offers a unique potential
to provide synoptic monitoring at daily time scales complementing in-situ sampling activities occurring in Lake
Erie. Bio-optical remote sensing algorithms require knowledge about the inherent optical properties (IOPs) of the
water for parameterization to produce robust water quality products. This study reports new IOP and apparent
optical property (AOP) datasets for western Lake Erie that encapsulate the May–October period for 2015 and
2016 at weekly sampling intervals. Previously reported IOP and AOP observations have been temporally limited
and have not assessed statistical differences between IOPs over spatial and temporal gradients. The objective of
this study is to assess trends in IOPs over variable spatial and temporal scales. Large spatio-temporal variability in
IOPswas observedbetween 2015 and 2016 likely due to thedifference in the extent andduration ofmid-summer
cyanobacteria blooms. Differences in the seasonal trends of the specific phytoplankton absorption coefficient be-
tween 2015 and 2016 suggest differing algal assemblages between the years. Other IOP variables, including chro-
mophoric, dissolved organic matter (CDOM) and beam attenuation spectral slopes, suggest variability is
influenced by river discharge and sediment re-suspension. The datasets presented in this study show how
these IOPs and AOPs change over a season and between years, and are useful in advancing the applicability
and robustness of remote sensing methods to retrieve water quality information in western Lake Erie.

© 2019 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
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Introduction and background

Over the past several decades the western basin of Lake Erie has ex-
perienced dramatic changes in water quality (Kane et al., 2014) that
have negatively impacted the millions of people who rely on the lake
for a source of drinking water, a place to recreate, and a location to
run their businesses. Of particular concern are the annually recurring
blooms of harmful cyanobacteria (cyanoHABs) that occur in the west-
ern basin, which in recent years are becoming more persistent and in-
tense (Bridgeman et al., 2013, Michalak et al., 2013, Stumpf et al.,
2012, 2016, Sayers et al., 2016, this issue). Annual cyanoHAB occur-
rences have been linked to the annual spring discharge from the Mau-
mee River (Stumpf et al., 2012, 2016) which provides the large
quantities of nutrients required to fuel these blooms. Long-term internal
es Research. Published by Elsevier B
phosphorus loading of the basin has also recently been shown to play a
role in annual cyanoHAB occurrence (Ho and Michalak, 2017). Further
complicating our understanding of bloom dynamics, is the abundance
of filter feeding dreissenid mussels present in the western basin,
which have been linked to increased cyanoHABs through selective feed-
ing and nutrient cycling (Vanderploeg et al., 2001; Conroy et al., 2005;
Smith et al., 2015). Fully understanding the combined effect of the
many forcing functions on Lake Erie's water quality, more and better
water quality measurements will be needed.

Traditional water quality monitoring in Lake Erie has been con-
ducted using in situ and laboratory observations. The USEPA Great
Lakes National ProgramOffice (GLNPO) has conducted spring and sum-
merwater quality sampling on Lake Erie since the early 1980s (Barbiero
et al., 2018) and the NOAA Great Lakes Environmental Research Labora-
tory (GLERL) has been conducting weekly monitoring for over five
years. Many other universities and agencies also have monitoring pro-
grams producing valuable data sets. Even with the impressive number
.V. All rights reserved.
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of assets making crucial measurements, it is likely not possible to fully
capture the spatial and temporal variability of various water quality pa-
rameters in Lake Erie with in situ data alone.

Satellite remote sensing offers a unique potential to provide synoptic
water quality monitoring of large water bodies on a daily basis. This ap-
proach has proven to be extremely valuable to better understanding
cause and effect relationships between observed phenomena and their
forcing functions. Several investigators have developed or applied algo-
rithms to retrieve water quality parameters in Lake Erie including
chlorophyll-a (Binding et al., 2012; Shuchman et al., 2013; Lesht et al.,
2013), water clarity (Binding et al., 2007, 2015), inorganic mineral con-
centrations (Binding et al., 2012; Shuchman et al., 2013), dissolved or-
ganic carbon (Shuchman et al., 2013), and cyanobacteria presence
(Vincent et al., 2004; Becker et al., 2009; Wynne et al., 2008; Sayers
et al., 2016; Ho et al., 2017). These remote sensing products have pro-
vided valuable new insights and an ability to quantify broad changes
in water quality in Lake Erie. While useful, these algorithms are limited
in their ability to derive more sophisticated water quality information
such as phytoplankton functional types (PFT) or algal group classifica-
tions.More advancedmulti-spectral and hyperspectral algorithmmeth-
odologies with precisemodel parameterizationswill be needed in order
to accurately recover these more detailed water quality products.

Bio-optical algorithms, both empirical and semi-analytical, relate
water quality properties to the spectral light field. In complex inland
and coastal waters, bulk optical properties are controlled by the abun-
dance and composition of the optically active constituents (OACs)
which are comprised of phytoplankton, colored dissolved organic mat-
ter (CDOM), and non-algal particles (Werdell et al., 2018). The abun-
dance of OACs are related to observed water leaving radiance, an
apparent optical property (AOP), through their unique inherent optical
properties (IOPs) which at the most fundamental level include spectral
absorption and scattering (Morel and Prieur, 1977). The IOP spectral
shapes, which dictate the spectral shape of observedwater leaving radi-
ance, can be highly variable dependingon the specific types of OACs that
are in the water column (Moore et al., 2014). For example, different
phytoplankton types can have distinctly different light absorbing pig-
ment compositions that have distinct spectral shapes (Bricaud et al.,
2004; Ciotti et al., 2002). As phytoplankton group composition changes
over the course of a year or between years, so do the underlying IOPs.
Remote sensing algorithms with the objective of identifying PFTs and
other parameters must take into account the variability in spectral
IOPs of the observed water body (IOCCG, 2014; Mouw et al., 2017).

Documented observations of IOPs in Lake Erie are relatively sparse in
respect to their spatial and temporal variability. Binding et al. (2008) re-
ported some of the first IOP measurements for Lake Erie by analyzing
laboratory derived absorption coefficients for several months in 2004
and 2005. O'Donnell et al. (2010) made in situ IOP and AOP measure-
ments for a two-day period in September 2007. Recently, Moore et al.
(2017) reported a full suite of IOP and AOP observations for thewestern
basin of Lake Erie acquired in mid-August for both 2013 and 2014 with
the goal of characterizing the optical properties during the
cyanobacteria bloom peak. While these measurements have been valu-
able for the development of remote sensingwater quality retrieval algo-
rithms, they are limited in their temporal scales. It is unclear from the
presently reported IOP and AOP values how representative they are
over the ice-free period and how consistent they are between years. Un-
derstanding the natural variability in IOPs over an entire season is im-
portant for remote sensing algorithms that require known values for
algorithm parameterization. Semi-analytical algorithm frameworks re-
ported by Binding et al. (2012), Shuchman et al. (2013), and Simis
et al. (2005) all make assumptions about mass specific absorption and
scattering coefficients computed as mean values from limited datasets.
How these algorithms, using “default” parameterizations, perform
over the vegetative season is unclear. Better understanding of the sea-
sonal IOP and AOP variability will allow for the refinement of these ap-
proaches to provide more robust retrievals over long time periods.
In this study, we investigate the spatial and temporal variability of
several IOP variables at weekly, monthly, and annual scales over the
vegetative season. The aim of this study is to 1) present a new IOP and
AOP dataset for Lake Erie at unprecedented temporal intervals
(weekly); and 2) identify significant patterns and trends in IOPs and
AOPs throughout the vegetative season.

Methods

Study area

Sampling was conducted on a near weekly basis in Lake Erie from
May through October of 2015 and 2016, collecting data from 6 master
stations (WE2,WE4,WE6,WE8,WE12, andWE13) shownon Fig. 1. Sta-
tion WE15 was sampled on a near weekly basis beginning in July 2015.
Data was collected from two other stations but for less extensive time
periods, and were not used in this analysis (WE9 was only sampled in
2016 and WE14 was only sampled from July through October of
2015). At each station instruments were deployed to measure IOPs/
AOPs and water samples were collected for basic water quality mea-
sures, i.e., chlorophyll-a (Chl-a), phycocyanin (PC), colored dissolved or-
ganic material (CDOM), and total and fixed suspended solids (TSS and
FSS, respectively).

Biogeochemical laboratory data

Water samples from the top meter of the water column were col-
lected with a Niskin bottle and poured into three sample bottles simul-
taneously, repeating until sample bottles were full. Samples for pigment
analyseswerefiltered ontoWhatmanGF/Ffilters, extractedwith appro-
priate solvent, and analyzed fluorometrically. For Chl-a samples, filters
were extracted with N,N-dimethylformamide (Speziale et al., 1984)
and analyzed on a Turner Designs fluorometer calibrated with Chl-a a
standards. Filters for PC determination were extracted in phosphate
buffer (Ricca Chemical, pH 6.8) using two freeze–thaw cycles, followed
by sonication (Horváth et al., 2013). Relative fluorescence was mea-
sured on a Turner Aquafluor fluorometer and converted to PC concen-
tration using a series of dilutions of a commercial standard (Sigma-
Aldrich). The concentration of total suspended solids (TSS) was deter-
mined gravimetrically after filtering the sample through a pre-dried,
pre-weighed Whatman GFC 47-mm filter. The filter was then
combusted for 4 h at 450 °C, cooled, and reweighed to measure volatile
suspended solids (VSS; APHA, 1998). The concentration of fixed
suspended solids (FSS), the non-organic sediments in thewater sample,
was determined as the difference between TSS and VSS concentrations.
Lake water was filtered under low vacuum on pre-rinsed (1 N HCl) 0.2
μmpore sizeMilliporemembranes for CDOMabsorptionmeasurements
and refrigerated (4 °C) in the dark until analyzed. Absorbance of the fil-
tered water was measured in a 10 cm quartz cuvette from 400 to
700 nm at 2 nm increments with a dual beam spectrophotometer
(Perkin Elmer, lambda 40), with deionized water used as the reference
(Effler et al., 2010). CDOMspectral slope (S)was calculated using a non-
linear exponential fit over the wavelength range from 400 to 500 nm
(Twardowski et al., 2004) using MATLAB code provided by the Maine
In-Situ Sound & Color Lab (http://misclab.umeoce.maine.edu).

Optical data

IOP datawere collected using aWET Labs spectral absorption and at-
tenuation meter (ac-s) (WET Labs, Inc.). This meter was deployed over
the side of the research vessel, along with a CTD instrument (Sea-Bird
Scientific) to record temperature and depth, and lowered to just above
the lake floor, collecting data throughout the water column. The ac-s
measured spectral attenuation and absorption at 86 wavelengths from
approximately 400 nm to 740 nm. In-lab calibration using purified
Milli-Q water was conducted according to WET Labs instructions on a

http://misclab.umeoce.maine.edu


Fig. 1. Station names and locations from2015 and 2016weekly data collections. Stations sampled regularly (weekly) are shownas black dots. Basin bathymetry is shown as varying shades
of gray with darker colors indicating deeper water depth.
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regular basis between field cruises in order to track instrument drift
(https://www.seabird.com/transmissometers/ac-s-spectral-
absorption-and-attenuation-sensor/).

A Satlantic HyperPro II profiler (Satlantic, Inc.) was deployed at the
stations to collect upwelling radiance (Lu) and downwelling irradiance
(Ed) throughout the water column. The profiler was deployed off the
side of the research vessel and collected data while slowly free-falling
through the water column. ProSoft software (v7.7, Satlantic, Inc.) was
used to process the HyperPro data for analysis, binning data to 0.3 m
depth intervals. Processing the rawdata files to level 4 generated diffuse
attenuation coefficients through the water column (Sea-Bird Scientific,
2017). Apparent optical depth, the depthwhere 90% ofwater leaving ra-
diance originates (Gordon and McCluney, 1975), was calculated as 1.3
divided by the wavelength-specific attenuation coefficients derived
from the profiler's Ed sensor (Werdell and Bailey, 2005; Bailey and
Werdell, 2006).

Hyperspectral above-water radiance was collected using a Satlantic
HyperGun (Satlantic, Inc.). This instrument collects radiance at 137
channels covering a spectral range of approximately 350–800 nm with
an approximate spectral resolution of 3 nm and a 3-degree field of
view. Upwelling radiance (Lu, W/m2/sr−1/nm−1) was measured at ap-
proximately 150° relative to the solar azimuth at the time of measure-
ment (Mobley, 1999). The HyperGun was pointed at the water's
surface at 40° from nadir and measurements were taken for 15 s. The
HyperGun was shifted 90° upward (~40° from zenith) and radiance
measurements were taken of the sky, Lsky, for approximately 15 s. The
measured radiance of an 18% reflective panel was collected at approxi-
mately 40° from nadir for approximately 15 s. Additionally, care was
taken to avoid shadows, sun glint, and floating debris when collecting
data. HyperGun data were downloaded from the instrument, radiomet-
rically calibrated anddark-offset corrected using themost recent factory
calibration file. Irradiance (Ed, W/m2/nm−1) was calculated as the radi-
ance of the panel divided by the known reflectance of the panel (0.18)
and multiplied by π (Mobley, 1999; Mueller, 2003). The water leaving
radiance (Lw) was corrected for diffuse sky contamination using the fol-
lowing equation: Lw= Lu− 0.028 ∗ Lsky (Mobley, 1999), where 0.028 is
taken to be the reflectivity of the water's surface. The remote sensing
reflectance (Rrs(λ), sr−1) was calculated as Lw divided by Ed. A
Savitzky-Golay filter (Savitzky and Golay, 1964) was used to smooth
the noise in the spectra.

Raw data from the ac-s instrument was processed through theWET
Labs Archive Processing (WAP) tool (v4.37, WET Labs, Inc.). Outlier cal-
ibration spectra caused by bubbles in the water supply were removed,
the average calibration absorption and attenuation spectra were calcu-
lated, and temperature corrected. Field data from the ac-s and CTD in-
struments were merged, correcting for time lags. The ac-s absorption
and attenuation data were interpolated to common wavelengths
(WET Labs Inc., 2011). Absorption tube scattering corrections were ap-
plied to the ac-s data to account for overestimations of the absorption
coefficients due to uncollected scattered light (Röttgers et al., 2013).
Temperature corrections were applied based on the temperature re-
trieved from the CTD instrument (Sullivan et al., 2006) and instrument
drift corrections were applied based on the most recent instrument
pure water calibration spectra. Additional checks were performed on
ac-s data, resulting in the removal of data meeting any of the following
criteria: absorption is greater than attenuation, absorption or attenua-
tion less than−0.005 (due to instrument precision, negative data values
greater than−0.005 were set to zero), or saturated backscattering data
(https://www.seabird.com/transmissometers/ac-s-spectral-
absorption-and-attenuation-sensor/). All remaining data were binned
by depth at intervals of 0.1 m.

After initial processing of the field data, additional steps were taken
to prepare the data for final analysis. Hyperspectral IOP data were ag-
gregated over the apparent optical depth from each station to best rep-
resent the water that was visible to satellite imaging sensors. If no
HyperPro profiler data were available on a given date, the season-long
average apparent optical depth for that station was used. The season-
long average was used in place of the most recent sampling because a
visual inspection of the optical depth spectra through the season re-
vealed substantial variability from week to week. A minimum depth of
1 m was used to ensure that enough field data was included in the ag-
gregated output. Station WE6 was too shallow to calculate attenuation,
resulting in no apparent optical depth data. For this station, all IOP data
were aggregated over the top 1 m. After apparent optical depth

https://www.seabird.com/transmissometers/ac-s-spectral-absorption-and-attenuation-sensor/
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aggregation, data were removed that failed a few basic checks: if the ab-
sorption or attenuation values were greater in red (640 nm) than in
blue (420 nm) or if the ratio of absorption or attenuation at 500 nm to
440 nm was b1. A Savitzky-Golay filter was used to smooth noise in
the spectral curves (Savitzky and Golay, 1964). In the approximately
7% of cases where the beam attenuation spectral curves did not follow
the expected exponential decay trend from 400 to 420 nm, the curve
fit function in Python's SciPy module was used to correct the shape of
the curve (Jones et al., 2001). All optical data are available by request
from the NOAA Great Lakes Environmental Research Laboratory
(GLERL).

Data analysis

Scattering (b) was derived from the ac-s meter-generated absorp-
tion (a) and beam attenuation (c) data according to Eq. (1):

c λð Þ ¼ a λð Þ þ b λð Þ ð1Þ

Absorption can be partitioned into constituent components accord-
ing to Eq. (2):

at λð Þ ¼ aw λð Þ þ apg λð Þ ð2Þ

where aw is the absorption due to pure water and apg is the absorption
due to particulates, ap, plus the absorption due to CDOM, ag. The output
from the ac-s has already had pure water absorption removed (WET
Labs Inc., 2011), leaving only the combined particulate and CDOM ab-
sorption as the constituent parts in the spectra. Using the lab-derived
CDOM absorption at 400 nm (aCDOM400) and the calculated CDOM
spectral slope (SCDOM), the CDOM absorption spectra were derived ac-
cording to Eq. (3) (Twardowski et al., 2004):

aCDOMλ ¼ aCDOM400 � e−S λ−400ð Þ ð3Þ

Subtracting the CDOM absorption spectra from the apg spectra re-
sults in the particulate absorption spectra (ap(λ)), which is the absorp-
tion due to algal and non-algal particles in the water. Particulate beam
attenuation (cp(λ)) can then be derived according to Eq. (4):

cp λð Þ ¼ ap λð Þ þ bp λð Þ ð4Þ

where bp is the scattering coefficient derived from Eq. (1). Because
CDOM scattering is assumed negligible or non-existent and pure
water scattering has already been removed, the calculated total scatter-
ing is inherently due to in water particulates.

Several IOP optical proxieswere generated from the derived ap spec-
tra. The particulate absorption PC line height (PCLHap) was used as a
proxy for the presence of PC andwas derived using a variation of the ab-
sorption line height methods described in Roesler and Barnard (2013).
PCLHap was calculated as the difference between ap at 620 nm (the PC
absorption peak; Simis et al., 2005; Roy et al., 2011) and the baseline ab-
sorption at 620 nm. The mass specific phytoplankton absorption coeffi-
cient at 665 nm (a*ph665) was used as a proxy for phytoplankton size/
type and was derived as the particulate absorption chlorophyll line
height (CHLLH – described below) divided by the corresponding lab-
derived Chl-a concentration for each sample. The absorption at
665 nm was used instead of 676 nm as used by Slade and Boss (2015)
because several relevant remote sensing algorithms including those
proposed by Simis et al. (2005) and Binding et al. (2012) use specific
phytoplankton absorption around this band in their respective bio-
optical models, which were developed in cyanoHAB conditions.

The absorption line height approach used in the calculation of
PCLHap and a*ph665 is fully described in Roesler and Barnard (2013)
as well as in Slade and Boss (2015). Briefly, the absorption line height
method calculates the difference of observed particulate absorption at
a reference wavelength above a baseline absorption value. This
approach allows for the estimation of pigment absorption in the pres-
ence of other absorbing constituents, which in the case of ap are other
non-algal particles. The baseline absorption value approximates the ab-
sorption from non-algal particles and is derived using a linear equation
of the form:

aBL λref
� � ¼ a λþ� �

−a λ−ð Þ
λþ−λ− � λref−λ−� �þ a λ−ð Þ ð5Þ

where λref is the reference wavelength (620 nm for PCLHap and 665 nm
for CHLLH), λ− is the wavelength at baseline start (600 nm for PCLHap

and 650 nm for CHLLH), and λ+ is the wavelength at baseline end
(648 nm for PCLHap and 715 nm for CHLLH).

The line height absorption is then calculated as:

aLH λref
� � ¼ a λref

� �
−aBL λref

� � ð6Þ

The particulate beam attenuation spectral slope (γ) was calculated
using a non-linear power law fit over the wavelength range from 400
to 500 nm (Boss et al., 2001; Slade and Boss, 2015) using MATLAB
code provided by the Maine In-Situ Sound & Color Lab (http://misclab.
umeoce.maine.edu). The particulate beam attenuation spectral slope
represents the variability in particle size distributions (Boss et al., 2001).

Results

Large variations inwater constituents (Chl-a, PC, FSS)were observed
over the course of the two-year study period. Table 1 summarizes the
range, mean, and median Chl-a, PC, and FSS values for 2015, 2016, and
combined for both years. The table represents data from all sites with
the exception of one sample from station WE8 on August 10, 2015
due to extremely large concentrations of surface scum (e.g.
6784 mg/m3 Chl-a and 8228 mg/m3 PC). Additionally the optical
proxy values are also summarized on the table and are described in de-
tail in subsequent sections.

Values of Chl-a, PC, and FSS were different between 2015 and 2016
(Fig. 2). Median Chl-a values in August 2015 were more than double
those in August 2016. Higher median Chl-a was also observed in 2015
for July and September while similar values were observed between
years in May and October (Fig. 2 top panel). Much larger PC values
were observed in July, August, and September 2015 compared to values
in 2016 (Fig. 2 middle panel). Lastly, FSS was highly variable for both
years with the largest values in 2015 occurring in June and October
while for 2016 the largest values occurred from August–October
(Fig. 2 bottom panel).

Mean monthly IOP parameter (absorption, scattering, and beam at-
tenuation) magnitudes displayed a wide range in variability for WBLE
in 2015 and 2016 (Fig. 3 left panels). For example, IOP magnitudes
were quite similar for August in both 2015 and 2016 while magnitude
differences between October 2015 (low magnitude) and 2016 (high
magnitude) were very large. In fact, the magnitudes in October 2015
and 2016 represent the minimum and maximum mean monthly IOP
values for both years combined. Even with the large differences ob-
served in October, magnitudes in all three IOPs were generally higher
in 2015 (solid lines) than 2016 (dashed lines).

Spectral differences were observed for all three IOP parameters
(Fig. 3 right panels) by month and year with the largest differences oc-
curring between October 2015 and 2016 again spanning the range of all
other months and years. The largest differences occur in the blue wave-
lengths (~400–450nm)where the decreasing slopes vary bymonth and
year. Conversely, the normalized absorption curves (Fig. 3 right middle
panel) for September 2015 and 2016 are nearly identical, both of which
exhibit a peak at the Chl-a absorption feature at approximately 665 nm.
This feature also appears in both August 2015 and 2016 coincidingwith
cyanoHAB bloomevents. However, very little visual evidence of the Chl-
a absorption feature at 665 nm exists in October 2015 and 2016 or in

http://misclab.umeoce.maine.edu
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Table 1
Summary statistics for the four inherent optical properties (aph*665, PCLHap, SCDOM,γ) and laboratory biochemical parameters (Chl-a, PC, and FSS). Summary statistics include range,mean,
and median values for each year and combined for both years.

Parameter Units 2015 2016 Combined

Range Mean Median Range Mean Median Range Mean Median

aph*665 m2/mg−1 b0.001–0.015 0.003 0.003 b0.001–0.009 0.004 0.004 b0.001–0.015 0.004 0.003
PCLHap m−1 b0.001–0.130 0.017 0.010 b0.001–0.11 0.008 0.003 b0.001–0.13 0.012 0.006
SCDOM nm−1 0.014–0.020 0.017 0.017 0.011–0.026 0.017 0.018 0.011–0.026 0.017 0.017
γ nm−2 0.21–2.05 0.91 0.84 0.49–2.26 1.01 1.01 0.21–2.26 0.96 0.93
Chl-a mg/m3 1.01–352.60 43.95 28.32 1.27–114.6 15.63 7.95 1.01–352.6 29.84 12.55
PC mg/m3 0.00–514.20 26.07 9.45 0.01–42.24 2.62 0.66 0.0–514.2 14.25 1.43
FSS g/m3 1.07–129.60 12.97 7.24 0.28–51.88 8.40 6.28 0.28–129.6 10.75 6.43
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July 2015 indicating strong absorption by CDOM or non-algal particles
relative to phytoplankton absorption in this wavelength region. The
normalized spectral scattering coefficients (Fig. 3 right bottom panel)
display two distinct groups of spectral shapes with September 2016
and October 2016 very similar to each other and yet quite different
from the other months and years.

Spatial variability inmean IOPmagnitude (Fig. 4 left panels) was ob-
served between five stations in theWBLE 2015–2016 dataset. Themax-
imum values for all three parameters were observed at WE12 followed
closely by WE2. Of the regularly sampled stations, these two stations
were in closest proximity to the mouth of the Maumee River. A distinct
separation in beam attenuation and scattering between stations WE12
and WE2 and all other stations was evident. Station WE4 exhibited
the lowest absorption for all spectral regions and lowest beam attenua-
tion in the ~400–500 nm range. In contrast, WE8 displays the lowest
scattering but relatively large absorption values.

Spatial differences in shape are clearly observed in the normalized
IOP spectra (Fig. 4 right panels) between the five stations in the
2015–2016 dataset. Stations WE4 and WE13 exhibited nearly identical
beam attenuation spectra (Fig. 4 right top panel) where as WE2,
WE12, and WE8 were different. The normalized absorption spectra
(Fig. 4 right middle panel) for stations WE2 and WE8 were identical
Fig. 2. Temporal patterns of chlorophyll-a (top panel), phycocyanin (middle panel), and fixed su
horizontal line is the median, the bottom and top of the box are the first and third quartiles re
maximum values respectively. Monthly median values for 2015 (left half) and 2016 (right hal
while the remaining stations exhibit slight shape differences in the
short blue (400–450 nm) spectral region. The Chl-a absorption feature
at 665 nm was observed at all stations with slight differences in shape.
The PC absorption peak at 620 nm was also observable at all stations.
Two distinct groupings were evident in the normalized spectral scatter-
ing (Fig. 4 right bottom panel) spectra with stations WE2, WE12, and
WE8 showing very similar shape while WE4 and WE13 were similar.
The two groups exhibited clearly different spectral scattering slopes.

The mass specific phytoplankton absorption coefficient at 665 nm,
aph*665, was analyzed as a proxy for phytoplankton/algal community
(i.e. size) variability which displayed seasonal and annual differences
in median values (Fig. 5 top panel). The mean, median, and range of
aph*665 values are displayed in Table 1. Using the Mann Whitney U
test (Mann andWhitney, 1947), significant differences from the overall
median aph*665 values were observed in 2015 for May (p b 0.001), Au-
gust (p b 0.001), September (p-0.024), and October (p b 0.001). Signif-
icant differences from the overall median were also identified in 2016
forMay (p=0.001), June (p= 0.008), September (p= 0.006), and Oc-
tober (p = 0.021). The largest aph*665 values for both 2015 and 2016
were observed in May and exhibited steady declines through August
as the phytoplankton community shifts from predominantly diatoms
to colonial cyanobacteria (Bosse et al., 2019; this issue). While May
spended solids (bottom panel) inwestern Lake Erie expressed as boxplots where the black
spectively, and the horizontal gray lines below and above the box are the minimum and
f) are shown in all three panels.



Fig. 3.Monthly mean beam attenuation, absorption, and scattering coefficients for 2015 and 2016. Absolute values are shown in the left panels while mean normalized spectra are shown
in the right panels. Lines are colored by month where solid lines represent 2015 data and dashed lines 2016 data. Note absolute value spectra (left panels) are on different y-axis scales.
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aph*665 were largest for both years, they were significantly different
from each other (p = 0.016) with greater median values occurring in
2015. For 2015, aph*665 values increased from August through October
while in 2016 the values continue to decrease from August through Oc-
tober. The difference in seasonal trends between years is a result of sig-
nificantly different values of aph*665 in August (2015 lower than 2016, p
b 0.001) and October (2015 N 2016, p = 0.004) respectively. Large var-
iability in monthly aph*665 values are observed in both 2015 and 2016,
however, the variability is not consistent between years. For example,
large variability aph*665was observed in June 2015 while there was lit-
tle variability in June 2016.

There were no significant differences in combined study (all 2015
and 2016 data) median aph*665 values between sampling stations
(Fig. 5 middle panel). Stations also exhibited very similar variability in
aph*665 with the exception of WE4 which displayed a larger degree of
variance relative to other stations. Additionally, all stations exhibited
median values similar to the combined study period median value
(0.003 m2/mg−1). Two stations, WE12 andWE15, displayed significant
differences (WE12 p= 0.05, WE15 p= 0.02) in aph*665 between 2015
and 2016while all otherswere not significantly different between years
(Fig. 5 bottom panel). However, with the exception of WE6, all stations
exhibited greater median values in 2016 compared with 2015. Annual
variability in aph*665 for each station was inconsistent as some stations
showed similar variability between 2015 and 2016 (e.g. WE15) while
others (e.g. WE6) were very different between years. Finally, there
were no significant differences between sampling station annual me-
dian aph*665 values and the overall combined median value.

The particulate absorption PC line height (PCLHap) was used to ex-
amine temporal and spatial variability of PC absorption as a proxy for
cyanobacteria abundance (Fig. 6). Comparisons between PCLHap values
and coincident PC extracted concentrations revealed a strong positive
relationship (Pearson's correlation = 0.72) (Fig. 6). While PCLHap and
PC concentration were positively correlated, a high degree of variability
was also observed, indicating PCLHap may be sensitive to other absorb-
ing pigments. For example, Chl-a exhibits a slight absorption feature in
the same spectral region (~620 nm) as PC absorption (Roy et al., 2011)
which contributes to the PCLHap in addition to PC. It also should be
noted that the spread observed in Fig. 6 could also be an effect of pig-
ment packagingwhere the PCLHapwas derived fromparticulate absorp-
tion where pigments remain bound in the cells/colonies while the
laboratory PC has been extracted as is measured in solution.

The mean, median, and range of PCLHap values are also displayed in
Table 1. Significant differences (see Fig. 7) from the overall study me-
dian PCLHap value (0.006 m−1) were observed in 2015 for May (p =
0.005), August (p b 0.001), September (p b 0.001), and October (p =
0.02), while differences were also identified in 2016 for June (p =
0.004), September (p= 0.009), and October (p= 0.011). The monthly
trends in PCLHap values were generally consistent between 2015 and
2016 with both years showing low values in May increasing through
August followed by a steady decline through October. Additionally, the



Fig. 4. Stationmean (2015 and 2016 combined) beam attenuation, absorption, and scattering coefficients. Absolute values are shown in the left panels whilemean normalized spectra are
shown in the right panels. Lines are colored by station location. Note absolute value spectra (left panels) are on different y-axis scales.
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highest maximum values for 2015 and 2016 were observed in August
coinciding with the peak cyanoHAB period (Wynne and Stumpf, 2015,
Sayers et al., this issue). While the seasonal trends were similar, the de-
gree of PCLHap increase fromMay to August was larger in 2015 than in
2016 indicating much greater abundance of cyanobacteria presence in
2015 than 2016. This is confirmed through a comparison of monthly
median PCLHap values between 2015 and 2016, where both August
and September 2015 values were significantly greater than the 2016
August and September PCLHap values (August p = 0.013; September
p b 0.001).

Spatial variability in the combined two-year study period sample
station median PCLHap values was observed (Fig. 7 middle panel),
with station WE4 exhibiting significantly lower median PCLHap values
than WE6 (p b 0.001). Stations WE12, WE13, WE15, WE2, WE6, and
WE8 did not have significantly different PCLHap values over the two-
year period. Moreover, all stations with the exception of WE4 showed
comparable PCLHap variability over the two-year study period. Addi-
tionally, the median PCLHap value for WE4 was significantly smaller (p
= 0.008) than the overall study median value while WE6 was signifi-
cantly greater (p b 0.001). Therewere also significant differences inme-
dian annual PCLHap values for stations between 2015 and 2016 (Fig. 7
bottom panel). For example, stations WE12 (p = 0.008), WE15 (p =
0.012), and WE2 (p = 0.003) all had significantly lower PCLHap values
in 2016 than in 2015, while WE13, WE4, WE6, and WE8 had no differ-
ence between years.
The CDOMabsorption spectral slope, SCDOM, was analyzed to charac-
terize the spatial and temporal variability of CDOM composition in
western Lake Erie. The mean, median, and range of SCDOM values are
also displayed in Table 1. While SCDOM values exhibited similar range
and median values overall for 2015 and 2016, significant temporal dif-
ferences in SCDOM were observed between 2015 and 2016 (Fig. 8 top
panel). June and July median SCDOM values were significantly lower in
2015 than in 2016while valueswere similar inMay, August, September,
and October (June p= 0.015, July p= 0.001). Intra-monthly variability
in SCDOM values was consistent between 2015 and 2016 except for Au-
gust and September where variability was larger in 2016 than in 2015.

While significant temporal differences in SCDOM were documented,
there were no significant differences in combined 2015–2016 median
values for each station (Fig. 8 middle panel). Variance in stationmedian
SCDOM values was also similar with WE4 showing a slightly higher de-
gree of variability than the other stations. Because of the increased var-
iance in SCDOM at WE4, its median value was significantly smaller than
the overall combined study median value (0.017 nm−1, p = 0.036).
There was also no significant difference between median SCDOM values
between years for each station, although the minimum and maximum
values were quite different for some stations between 2015 and 2016
(e.g. WE15) while others were not (e.g. WE2) (Fig. 8 bottom panel).

In order to understand the spatial and temporal variability in scatter-
ing by particles (suspended solids and phytoplankton), the particulate
beam attenuation (cp) spectral slope (γ) was analyzed (Fig. 9 top



Fig. 5. Spatial and temporal patterns of aph*665 inwestern Lake Erie expressed as boxplots where the black horizontal line is themedian, the bottom and top of the box are the first and third quartiles respectively, and the horizontal gray lines below
and above the box are theminimumandmaximumvalues respectively.Monthlymedian values for 2015 (left half) and 2016 (right half) are shown in the top panel. Stationmedian values for the combined 2015–2016 dataset are shown in themiddle
panel. Annual station median values are shown in the bottom panel.
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Fig. 6. Comparison between particulate absorption phycocyanin line height (PCLHap) (x-axis) and laboratory extracted phycocyanin concentration (Lab PC) (y-axis). Note the log10 scales.
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panel). The mean, median, and range of γ values are also displayed in
Table 1. Differences between months in 2015 and 2016 were evident,
most notable where July 2015 was significantly greater than July 2016
(p = 0.01), while 2016 September (p b 0.001) and 2016 October (p =
0.002) were larger than both months in 2015. Very similar values
were observed in both August 2015 and 2016 corresponding to the
dominant cyanoHAB occurrence period. Intra-monthly variance in γ is
greatest in May and October for both years corresponding to elevated
river discharge and resuspension events. The single largest monthly
variance occurred in July 2015 during the cyanoHAB initiation period
where there were several large precipitation events resulting in very
high discharge rates from the Maumee River (Michalak et al., 2013).

Spatial differences in γwere observed between stations for the com-
bined 2015–2016 dataset (Fig. 9 middle panel) most notably at WE4
which had median γ values significantly lower than the other stations
(p b 0.001). Stations WE13 and WE4 exhibited the lowest γ values
and are located the furthest distance offshore relative to the Maumee
River discharge plume. The highest values of γ were observed at WE8,
which also exhibited the greatest variability. Comparison of median γ
values for each station between years suggested general similarity
with the exception of WE4 which had significantly lower values in
2015 than in 2016 (p= 0.007). While stations generally exhibited sim-
ilarmedian values between years, therewere differences in the range of
γ values observed at each station. For example, maximum γ values at
WE6 were approximately 60% greater in 2015 than in 2016 while max-
imum values were almost 50% greater in 2016 than 2015 for WE13
(Fig. 9 bottom panel).

In light of the large observed variability in western Lake Erie IOPs
and optical proxies, it is expected that similar differences in measured
remote sensing reflectance (Rrs) would be observed. Mean Rrs spectra
were calculated for each month (using data from all stations) in 2015
and 2016 respectively and are shown in Fig. 10 (red lines). Variability
in monthly spectra are also shown in the gray-black regions around
themean spectrawhere each color represents a percentage ofmeasured
Rrs values, following the method described by Hochberg et al. (2003)
(light gray = 2.5–97.5%, medium gray = 12.5–87.5%, dark gray =
25–75% and black = 37.5–62.5%). Note, no Rrs data were recorded in
May and October for 2016 due to the instrument undergoing mainte-
nance. Within-year variability in mean spectral shape is evident in
both 2015 and 2016. Early season (i.e. May–June) mean spectra for
both years exhibit shapes typically associated with diatom presence
(i.e. a wide and rounded peak between 500 and 600 nm), while mean
spectra with cyanobacteria spectral features (e.g. troughs around
620 nm (PC absorption) and 676 nm (Chl-a absorption); peak around
705 nm (particle scattering)) occur in August for both years. A wide
range in spectra magnitude is observed in June and October 2015,
which is due to the presence of large sediment plumes characteristic
of the elevated reflectance values in the red spectral region (i.e.
600–700 nm).

In addition to the monthly variability in Rrs, spatial variability was
also evident. Fig. 11 is an example of the variability in Rrs between sta-
tions WE4 (top panels) and WE6 (bottom panels). Absolute Rrs values
are shown in the left panels while normalized Rrs spectra are shown in
the right panels. Reflectance spectra were normalized (nRrs(λ)) by di-
viding each spectra by its root sumof squares (Wei et al., 2016). A differ-
ence in the range in Rrs magnitude betweenWE4 andWE6 is apparent,
withWE6 exhibitingmuchhigher Rrs in the 550–700nm spectral region
likely the result of substantial sediment plumes. The normalized spectra
(right panels) show a clear difference in spectral shapes between the
stations withWE6 exhibiting a mean spectra with features characteris-
tic of cyanobacteria while WE4 is more typical of other phytoplankton
assemblages. Both stations display spectra associated with surface
scums events (peak ~705 nm) however; these scums appear to be
more frequent at WE6.

Because of the similar variability observed in both IOPs and AOPs
(Rrs) and the fact that Rrs shape and magnitude are a function of IOPs,



Fig. 7. Spatial and temporal patterns of the particulate absorption phycocyanin line height (PCLH) inwestern Lake Erie expressed as boxplotswhere the black horizontal line is themedian, the bottom and top of the box are the first and third quartiles
respectively, and the horizontal gray lines below and above the box are the minimum and maximum values respectively. Monthly median values for 2015 (left half) and 2016 (right half) are shown in the top panel. Station median values for the
combined 2015–2016 dataset are shown in the middle panel. Annual station median values are shown in the bottom panel.

499
M
.J.Sayers

etal./JournalofG
reatLakes

Research
45

(2019)
490–507



Fig. 8. Spatial and temporal patterns of the CDOM spectral slope, SCDOM, in western Lake Erie expressed as boxplots where the black horizontal line is the median, the bottom and top of the box are the first and third quartiles respectively, and the
horizontal gray lines below and above the box are the minimum and maximum values respectively. Monthly median values for 2015 (left half) and 2016 (right half) are shown in the top panel. Station median values for the combined 2015–2016
dataset are shown in the middle panel. Annual station median values are shown in the bottom panel.
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Fig. 9. Spatial and temporal patterns of the particulate beam attenuation spectral slope, γ, in western Lake Erie expressed as boxplots where the black horizontal line is the median, the bottom and top of the box are the first and third quartiles
respectively, and the horizontal gray lines below and above the box are the minimum and maximum values respectively. Monthly median values for 2015 (left half) and 2016 (right half) are shown in the top panel. Station median values for
the combined 2015–2016 dataset are shown in the middle panel. Annual station median values are shown in the bottom panel.
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Fig. 10. Temporal patterns in remote sensing reflectance (Rrs, sr−1) inwestern Lake Erie for 2015 (top panels) and 2016 (bottom panels). Themonthlymean spectra are displayed as red lines. Variability inmonthly spectra are also shown in the gray-
black regions around themean spectra where each color represents a percentage of measured Rrs values, following themethod described byHochberg et al. (2003) (light gray= 2.5–97.5%, medium gray= 12.5–87.5%, dark gray=25–75% and black
= 37.5–62.5%). Note, there were no Rrs observations for May and October 2016.
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Fig. 11. Study period mean remote sensing reflectance (Rrs, sr−1) for stationsWE4 (top panels) andWE6 (bottom panels). Absolute Rrs (left panels) and normalized Rrs (right panels) are
shown for both stations. The study period mean spectra are displayed as red lines. Variability in study period spectra are also shown in the gray-black regions around the mean spectra
where each color represents a percentage of measured Rrs values, following the method described by Hochberg et al. (2003) (light gray = 2.5–97.5%, medium gray = 12.5–87.5%, dark
gray = 25–75% and black = 37.5–62.5%).
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it is expected that the IOP proxy variability should correlate with
changes in Rrs. An example of this relationship is shown in Fig. 12
which is a scatterplot between PCLHap (y-axis) and PCLHRrs (x-axis).
PCLHRrs was calculated from the measured Rrs spectra using the same
line height approach and the same wavelengths as the PCLHap (refer
to Methods section). Because the spectral feature of interest (PC
Fig. 12. Comparison between particulate absorption phycocyanin line height (PCLHap) (y-axis)
where the phycocyanin to chlorophyll-a ratio (PC/CHL) is low (≤0.1) are shown as blue dots w
absorption) is a trough in the Rrs spectra the PCLHRrs values are negative
as opposed to positive for the PCLHap. In Fig. 12, the PCLHRrs values were
multiplied by −1 in order to express the values as positive numbers.
Samples shown on Fig. 12 are binned into two groups where the lab
based PC/Chl-a ratio was less than or equal to 0.1 (blue dots) and N0.1
(red dots). These groups represent samples dominated by PC (red
and remote sensing reflectance phycocyanin line height (PCLHRrs) (x-axis). Observations
hile high PC/CHL ratio (N0.1) observations are displayed as red dots.
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dots) and Chl-a (blue dots) respectively. The plot reveals a positive
trend between PCLHap and PCLHRrs for PCLHRrs values greater than ap-
proximately 0.00075 sr−1. Note that the majority of Chl-a dominated
samples (blue dots) result in a very small change in PCLHRrs; however,
several samples do result in an increase in PCLHRrs although less so
than those PC dominated samples. Many of the PC dominated samples
(red dots) positively correlate with PCLHRrs howeverwith a high degree
of variability. This variability is expected as Rrs is controlled by both ab-
sorption aswell as backscatter, the latter ofwhich is not accounted for in
this plot. Never the less, Fig. 12 suggests observed changes in Rrs at
620 nmare at least partially explained by changes in particulate absorp-
tion, which is highly correlated with increased PC abundance (recall
Fig. 6). This result is the basis for remote sensing algorithms aiming to
retrieve PC concentration (e.g. Simis et al., 2005).

Discussion

A unique aspect of this study is the documentation of significant
temporal IOP variability over the May–October period for two full
years (2015–2016). Overall, very limited temporal IOP observations
exist in the Great Lakes as a whole and are mostly limited to two sam-
plings from different years (Perkins et al., 2013). Several studies charac-
terizing IOPs in Lake Erie have been limited to cruises spanning several
days with station revisits on monthly time scales. Binding et al. (2008)
conducted IOP sampling cruises in September 2004 and May, July, and
September 2005 with the sampling stations located throughout the
western, central, and eastern basins of Lake Erie. O'Donnell et al.
(2010) made IOP observations in the western basin of Lake Erie in Sep-
tember 2007 but they only occurred over a two-day period. Because of
the limited temporal sampling of these studies, it is likely that only a
subset of the range in IOP and optically active constituent variability
was quantified. For example, Binding et al. (2008) reported the range
of aCDOM at 440 nm as 0.08 to 0.75 m−1 while for this study the range
was 0.05 to 6.74 m−1, a ~9-fold difference in maximum value, with
the highest values occurring in July and August. Similarly, O'Donnell
et al. (2010) noted a range in the particulate scattering (bp) spectral
slope of −0.28 to −1.0 while for this study the range was from 0.57
to −2.81 indicating vastly different particle size distributions were en-
countered in each study. Only recently reported are IOP observations
(Moore et al., 2017) from the month of August, which represents the
dominant cyanoHAB period and many times encapsulates the annual
peak bloom extent (Wynne and Stumpf, 2015; Sayers et al., this
issue). While Moore et al. (2017) provided a very useful bio-optical
characterization of cyanobacteria blooms in WBLE, the study periods
were limited to the August period for two years, which limits the ability
to evaluate how IOPs vary during bloom initiation and senescence.
Moreover, little is known about the variability in IOPs inWBLE between
years on short time scales. The near weekly sampling for two full years
presented in this study provides the necessary temporal scale to better
understand WBLE optical dynamics.

A very interesting component of this study is the documentation of
the extreme variability in mean monthly IOPs for 2015 and 2016 in
the WBLE. For example, the magnitudes in beam attenuation (c), ab-
sorption (a), and scattering (b) for October 2015 (high) and 2016
(low) span the entire range of values for all other months and years
combined. It is not unexpected that large variability between October
2015 and 2016was observed, as this is a period of rapid transition in en-
vironmental conditions in Lake Erie. Water temperatures are dropping
quickly with increasing precipitation and cloud cover, and sediments
are being re-suspended from increased wave action. Moreover, as ob-
served in 2011, very large but short-lived (b7 days) cyanoHAB events
can also occur, but these blooms do not occur every year (Michalak
et al., 2013). The large IOP variability observed in October indicates
the necessity of regular in situ sampling during the algal bloom periods
in Lake Erie. This variability also suggests that tight satellite and in situ
matchup restrictions (e.g. minimal difference in time between
measurement acquisition and satellite overpass) should be considered
in order to ensure valid comparisons are made. It is also generally evi-
dent from Fig. 3 that IOP values were higher in 2015 than in 2016,
which corresponds with the significantly larger cyanoHAB occurrence
in 2015 (Sayers et al., this issue). Annual cyanoHAB events in Lake Erie
have been shown to be highly variable from year-to-year partially due
to varying spring discharge rates from the Maumee River (Stumpf
et al., 2016; Sayers et al., 2016). Sayers et al. also presented a relation-
ship between cyanoHAB extents and the number of sediment re-
suspension events that are driven by the regional meteorology (wind
speed) and basin morphology (depth). Using these predictors (spring
discharge and re-suspension events), 2015 is expected to have experi-
enced larger more sustained cyanoHABs than 2016, which is consistent
with the IOP observations presented in Fig. 3.

Maumee River discharge rates are also contributing to temporal var-
iability of IOPs. This is evidenced by the almost 25-fold difference in
mean monthly discharge between July 2015 (19,300 ft3/s) and July
2016 (794 ft3/s) which corresponds to an approximate 1.5-fold differ-
ence in bp (440), N2-fold difference in apg (440 nm), and 1.6-fold differ-
ence in cpg (400 nm). Because July is often the first month of bloom
initiation in WBLE the large variability is not surprising as bloom dy-
namics often change between years. On the other hand, much smaller
differences in IOP magnitude were observed between August 2015
and 2016, yet the IOP values were generally near the highest for all
months and years combined. Because August is usually within the
mid-point of the annual bloom cycle these results are not surprising
and indicate a relatively stable period between years,with little variabil-
ity due to river discharge (August 2015 = 1567 ft3/s, August 2016 =
640 ft3/s) but high IOP values are likely due to persistent cyanoHAB
presence. Aggregation of IOPs by month allows for simple comparison
and identification of seasonal patterns between years and can help
link observations to significant controlling factors. Because these sea-
sonal patterns can change between years due to difference in bloomdy-
namics and other factors, it is critical to monitor IOPs on at least a
monthly scale for the June through October period for every year of
interest.

One of the most interesting and unique results from this study is the
documentation of seasonal variability in aph*665 over the course of the
vegetative season for two years. The range in aph*665 observed in this
study was similar to the range reported by Moore et al. (2017) (their
Fig. 5b) but less than documented by Binding et al. (2008) which ob-
served an order of magnitude larger maximum value. Mean aph*665
values for 2015 (0.0034 m2 mg−1) and 2016 (0.0038 m2 mg−1) were
2-fold smaller than the mean value (0.007 m2 mg−1) reported by
Binding et al. (2008) and appear to be lower than those depicted
(their Fig. 5b) in Moore et al. (2017) although nomean values were re-
ported for the 665 nm wavelength. It is important to note that in this
study aph*665 was calculated from in situ ac-s measurements of ap
using a line height approach,while the other studieswere derived spec-
trophotometrically using filtered water samples that had been mea-
sured for both phytoplankton absorption and non-algal particle
absorption. Because of the differences in these two approaches, it is ex-
pected that the aph*665 calculated in this study would be smaller than
those calculated using lab spectrophotometry. Roesler and Barnard
(2013) noted a factor of two lower value using the line height method
for samples from themarine environment. Assuming a factor of two dif-
ference between the twomethods, our studymean aph*665 valuewould
be very close to that reported by Binding et al. (2008). Further investiga-
tion into coherence of these twomethods is needed to understand how
intercomparable their values are moving forward.

A steady decline inmedian aph*665 values fromMay through August
is evident in both years indicating a steady shift in the phytoplankton
community size structure from smaller to larger size populations. The
lowering of aph*665 is attributable to the pigment package effect
(Bricaud et al., 1995) which is a function of pigment abundance and
how pigments are arranged within the cell. Larger cells tend to exhibit
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higher degrees of pigment packaging thus lower aph* values in general.
As pointed out in Moore et al. (2017) some of the observed packaging
effect (i.e. lower aph* values) may be due in part to the formation of
large cyanobacteria colonies which could impart a degree of “packag-
ing” well beyond that observed for individual cyanobacteria cells
(Matthews and Bernard, 2013; Zhang et al., 2012). Interestingly,median
aph*665 in August 2015 were significantly less than those for 2016,
likely indicating less abundance of large cyanobacteria colonies in
2016. Similarly, the lowest median aph*665 values for 2016 were ob-
served in October suggesting the increased presence of larger sized phy-
toplankton or formations of large cyanobacteria colonies. The difference
in the annual trend of aph*665 between 2015 and 2016 suggests a very
different algal community/size progression for each year. Other studies
reporting values of aph*665 (Binding et al., 2008; Moore et al., 2017) do
not have the fine scale temporal granularity over the full vegetative sea-
son to document these observed transitions, which is critical informa-
tion for remote sensing bio-optical models that utilize values of
aph*665 for initial parameterization (Shuchman et al., 2013).

In light of the observed temporal trends in aph*665 observations, it
was somewhat surprising there were no significant differences in
aph*665 between stations over the combined two-year study period.
Studies that also report aph* values for Lake Erie did not document var-
iability at a particular station over long time periods but rather at the
basin scale, further confirming the novelty of this dataset. Because
aph*665 values were consistent for stations over the combined two-
year period, it would suggest that the fluctuations in phytoplankton/
cyanobacteria assemblages over the season occur uniformly across the
area represented by the sampling stations. A possible exception may
be for station WE4 where the greatest variability in aph*665 was ob-
served. WE4 is located approximately equidistant from the mouths of
the Maumee and Detroit Rivers and is situated in 8.5 m deep water.
This location appears to be in a transition zone between predominantly
Maumee River water and Detroit River water that can switch between
the two depending on currents and flows. Moore et al. (2017) docu-
mented this transition in optical properties from the Detroit Plume to
Maumee Baywater and noted that this frontal boundary is always pres-
ent but varies in location depending on “climatic factors”. This observa-
tion is consistent with the increased variability in IOPs at WE4 relative
to other stations not in this transition area. Because aph*665 tends to
vary uniformly for stations over the season (exception for WE4), it
may be possible to assume a temporal mean aph*665 value for remote
sensing model parameterization for waters inclusive of the sampling
stations in this study.

This study is the first to document the use of the particulate absorp-
tion line height method, using ac-s data, at the PC absorption peak
(~620 nm) to track cyanobacteria abundance. Not only was there a
strong correlation between individual sample PCLHap and PC concentra-
tion (Fig. 11, Pearson's correlation 0.72), the monthly median PCLHap

values for 2015 and 2016 clearly follow the same patterns identified
in the median laboratory extracted PC concentrations (Fig. 2, Pearson's
correlation = 0.96) indicating the method is sensitive to varying levels
of pigment abundance. The temporal trends in PCLHap suggest a much
more intense cyanoHAB occurrence in 2015 relative to 2016, with
both peaking in August. In terms of spatial extent, the cyanoHAB
bloom was more intense in 2015 for all stations except WE4, which
showed very similar median PCLHap values between years. The lack of
a large median PCLHap value at WE4 in 2015 suggests the bloom was
only periodically occurring at that location and not of particularly high
abundance, which agrees with the notion of WE4 being located in a dy-
namic transition zone betweenDetroit River andMaumee River waters.
These observations are consistent with those reported by Sayers et al.
(this issue) that mapped the areal extents of cyanoHAB blooms for
2015 and 2016 using a modified Chl-a retrieval algorithm. It should be
acknowledged that the ap around 620 nm above the estimated aNAP
baselinemay not be exclusively due to PC. Chl-a exhibits a small absorp-
tion peak in the 620 nm range that may also be included in the PCLHap
value which is a possible source of variability when comparing PCLHap

to laboratory derived PC concentrations. The good agreement between
PCLHap and laboratory PC concentrations confirms the utility of using
this spectral feature in remote sensing algorithms to estimate PC
(Simis et al., 2005) that have been developed for sensors with wave-
lengths in this region (algorithm review in Mishra et al., 2017).

The CDOM absorption spectral slope, S, values reported in this study
were significantly variable over the two-year study period with mini-
mum and maximum values exceeding those previously reported. The
CDOM spectral slope has been shown to relate to the molecular weight
of the acids (humic and fulvic) comprising the dissolved material. The
ratio of humic acids to fulvic acids have been used as a proxy for
CDOM composition (e.g. from phytoplankton decomposition or decay
of terrestrial material) (Carder et al., 1989; Yacobi et al., 2003). Regard-
less of the CDOM composition, the spectral slope is a critical component
to incorporate in multi-spectral remote sensing bio-optical models
(Twardowski et al., 2004). The range of SCDOM values (0.011 to
0.026 nm−1) in this study was twice as large as those reported in
Binding et al. (2008) (0.0128 to 0.0197 nm−1) and five-fold greater
than observed by Moore et al. (2017). This range is almost identical to
that reported by Babin et al. (2003) (0.011 to 0.025 nm−1) for a wide
range of coastal European waters. The much greater range in SCDOM
values in this study is not surprising given that the maximum value of
aCDOM443 was ~9 fold greater than reported in Binding et al. (2008)
and almost 6 fold more than what Moore et al. (2017) observed.
Given the wide ranges of both SCDOM and aCDOM443 between the three
studies, the mean SCDOM values of each were in relative agreement
with Binding et al. (2007) and Moore et al. (2017) reporting 0.0161
and 0.018 nm−1, respectively, while the overall mean for this study
was 0.0173 nm−1. Much of the range in SCDOM values was a result of
much larger monthly fluctuations in 2016 especially in August and Sep-
tember withmuch less variability observed in 2015. This would suggest
much greater variations in allochthonous and autochthonous sources of
CDOM in 2016 relative to 2015, possibly due to differences in river dis-
charge fluctuations or cyanoHAB abundance between years. Binding
et al. (2008) suggested that the preferential adsorption of highermolec-
ular weight CDOM on to suspended mineral particles, leaving only the
lower weight fraction free in the water, may alter the bulk absorption
properties one may expect to observe, which may well be occurring in
these measurements also altering observed patterns.

This study also documents the first reported values of the particulate
beam attenuation (cp) spectral slope, γ, in the Great Lakes. To first order
the cp spectral slope has been shown to relate to the power law slope of
the particle size distribution (PSD) both theoretically (Boss et al., 2001)
and experimentally (Slade and Boss, 2015), potentially providing infor-
mation into phytoplankton community structure and sediment transport.
The observed range of values of γ in this study was more than two-fold
larger than observed in coastal ocean waters (Slade and Boss, 2015) and
the bottom boundary layer in the mid-Atlantic Bight (Boss et al., 2001).
The large variability in γ suggests highly variable PSDs throughout the
two-year period in western Lake Erie with largest fluctuations occurring
in July 2015 corresponding to extremely high mean discharge
(19,300 ft3/s compared with long term July mean discharge 2850 ft3/s)
from the Maumee River. August and September for both years exhibited
the most consistent γ values suggesting very similar PSDs during the
dominant cyanoHAB period while experiencing relatively low discharge
rates (b1600 ft3/s). There was little spatial difference in γ values with
only WE4 exhibiting significantly lower values than all other stations.
The lower γ values would suggest the presence of a PSD with relatively
larger particles likely in the form of large diatoms or other micro-
plankton and less occurrence of small particles consistent with inorganic
sediment particles either re-suspended or injected from the river. It
should be noted that the acceptance angle (0.93°) on the beam attenua-
tion chamber optic of the ac-s can act as a particle size “filter” for particles
larger than 50 μm (Boss et al., 2009; Slade and Boss, 2015). Additionally,
the relationship of γ to the PSD slope assumes the PSD slope follows the



506 M.J. Sayers et al. / Journal of Great Lakes Research 45 (2019) 490–507
form of a negative power law as a function of particle diameter (Bader,
1970), which may not be true in many environments including complex
freshwater systems. Boss et al. (2001) also note the presence of strongly
absorbing particlesmay limit the robustness of the relationships between
γ and PSD due to anomalous dispersion. Further research into the rela-
tionship between γ and PSDs in the Great Lakes, and specifically Lake
Erie, is needed to understand these dynamics.

In light of the observed spatial and temporal variability in IOPs andop-
tical proxies in western Lake Erie, uncertainties in remote sensing algo-
rithm retrievals that use fixed model parameterizations need to be
evaluated spatially and temporally. Bio-optical remote sensing algorithms
rely on knowing some information about the underlying IOPs of thewater
being sensed (Werdell et al., 2018). Previous investigators have formu-
lated retrieval algorithm frameworks that make assumptions regarding
the underlying IOPs, usually from a set of in situ measurements or from
reported literature. For example, Binding et al. (2012) proposed an ap-
proach to simultaneously retrieve concentrations of minerogenic
suspended particulate matter (MSPM) and Chl-a using the red and
near-infrared bands of the MODIS Aqua sensor. The Binding et al.
(2012) algorithm relates the satellite-observed water leaving radiance
at 667 and 748 nm to the water volume absorption and backscatter coef-
ficients using mean mass specific absorption and backscattering coeffi-
cients for phytoplankton and non-algal particles (aph* and aNAP*).
Through these assumptions, concentrations ofMSPMandChl-a can be es-
timated. Similarly, Simis et al. (2005) proposed a bio-optical algorithm to
retrieve PC concentration through the estimation of PC absorption (apc) at
620 nm. The algorithm related the ratio of reflectance at 709 and 620 nm
to a model for PC absorption and then to PC concentration using an as-
sumed apc* value. Finally, Shuchman et al. (2013) reported a bio-optical
inversionmodel to retrieve concentrations of the primary optically active
constituents (OACs) Chl-a, CDOM absorption, and fixed suspended solids
(FSS) from multi-spectral MODIS imagery. The model relates concentra-
tions of the OACs to observed reflectance values using assumed values
for aph*, SCDOM, and aNAP* to minimize the difference between measured
and modeled reflectance at all MODIS bands.

Though each of these model frameworks retrieves different water
parameters, they all rely on parameterization of specific IOPs, which
have been shown in this study to vary in time and space. Variable
model parameterization may yield lower uncertainties in model re-
trievals when deployed throughout the ice-free period. For example,
the aph*665 value used in the Binding et al. (2012) model is
0.025m2mg−1, which is approximately 1.6 times greater than the larg-
est aph*665 value observed in this study (0.015 m2 mg−1) and almost
seven times greater than the study mean value (0.004 m2 mg−1).
Even after transforming the aph*665 values in this study to values com-
parable in magnitude with Binding et al. (2012) (i.e. multiplication by a
factor of two, Roesler and Barnard (2013)), the transformed studymean
value (0.008 m2 mg−1) is still a factor of three lower than the
0.025 m2 mg−1 value used in Binding et al. (2012). It is possible that
an adaptive parameterization of aph*665 in the Binding et al. (2012)
model over the observed range of values could provide more accurate
retrievals of both Chl-a and FSS in both cyanobacteria and non-
cyanobacteria conditions. Additionally, Simis et al. (2005) acknowledge
the high degree of variability of apc*620 in response to changing envi-
ronmental conditions and suggest that if specific knowledge of the var-
iability in apc*620 is known or can be estimated for a particular
environment of interest, more accurate retrievals should be attainable.
Similar to the other two model frameworks, the Shuchman et al.
(2013) approach assumes a SCDOM value of 0.016 nm−1 which is similar
to that reported in Binding et al. (2008) (0.0161 nm−1) but lower than
the mean values reported by Moore et al. (2017) (0.018 nm−1) and in
this study (0.0173nm−1). In addition, the large range of SCDOM observed
in this study suggests that the model default parameterization may be
significantly different from the actual value for a given date and location
depending on environmental factors. Further investigation into how re-
mote sensing algorithm accuracy and uncertainty varies as a function of
different parameterizations is warranted and should ultimately lead to
more accurate water quality products.

Conclusion

Presented in this study is a unique IOP data set for western Lake Erie
that spans the vegetative season over two full years. Weekly observa-
tions at the same locations over a long period (six months) allows in-
sights into the natural variability of IOPs as a function of changing
algal communities, river discharge fluctuations, and various other envi-
ronmental forcing functions. Spatial variations in IOPs were identified
and related to the proximity of a station to significant river discharge
plumes. Significant variability in IOPs shape and magnitude were ob-
served on weekly and monthly scales suggesting in situ measurements
should be collected at least monthly in western Lake Erie to adequately
track the significant variability.

This study documented significant shifts in the mass specific phyto-
plankton absorption coefficient, aph*665, from the May through August
period associated with the development of significant colonial
cyanobacteria blooms. Differences in annual progression and magni-
tude of aph*665 between 2015 and 2016 suggests the relative intensity
of the annual bloom is a dominant factor controlling the distribution
of aph*665 values in western Lake Erie from year to year. Further mea-
surements of aph*665 at short time scales over the full vegetative season
are needed to fully understand how shifts in algal communities vary as a
function of cyanoHAB extent and intensity.

Other IOP variables displayed significant variability over the two-year
dataset with the PCLHap exhibiting a seasonal trend in association with
the cyanoHAB progression, while SCDOM and the cp spectral slope exhib-
ited variability more associated with environmental forcing functions.
Fully understanding the complex IOP variability associated with unpre-
dictable driving factors, such as increased discharge rates from high pre-
cipitation events and wind driven sediment re-suspension, will require
further investigation and targeted sampling efforts to capture the full
range of optical variability over these relatively short-lived events.

Finally, remote sensing water quality retrieval algorithms that as-
sume a single IOP parameterization can yield meaningful results on
the average (e.g. annually); however, significant errors may be present
for time periods and locations where the model optical parameters are
significantly different than the actual properties. The IOP dataset pre-
sented in this study has shed some light on how these properties change
over the course of a season and between years, andmay be useful in ad-
vancing the applicability and robustness of remote sensing methods to
retrieve valuable water quality information in western Lake Erie.
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